H Tesla κάνει καλύτερο το Autopilot

Η Tesla ανακοίνωσε πως στην έκδοση λογισμικού 8.0 το Autopilot γίνεται πιο ασφαλές. Συγκεκριμένα. το Autopilot κάνει χρήση ραντάρ που σε συνδυασμό με τις μπροστινές κάμερες και το νέο software, το σύστημα πλέον αναγνωρίζει καλύτερα τον δρόμο.

Όλα τα μοντέλα της Tesla που έχουν κατασκευαστεί από τον Οκτώβριο του 2014 και έπειτα, εξοπλίζονται με το συγκεκριμένο

ραντάρ, το οποίο μέχρι σήμερα χρησιμοποιούνταν ως βοηθητικό για την κύρια κάμερα. Πλέον το ραντάρ λειτουργεί συνεπικουρικά με την κάμερα και επεξεργάζεται καλύτερα το σήμα που παίρνει, δημιουργώντας έτσι μια τρισδιάστατη εικόνα του περιβάλλοντος, με το ραντάρ να καταγράφει δεδομένα κάθε δέκατο του δευτερολέπτου.

Το ενημερωμένο Autopilot κάνει χρήση ενημερωμένων χαρτών, ενώ “μαθαίνει” την χαρτογράφηση του χώρου, μέσω της κοινής χρήσης πληροφοριών από τα μοντέλα της Tesla, επιτρέποντας στα Model S και Model X να φρενάρουν ακόμη και μόνα τους σε συνθήκες μηδενικής ορατότητας, ενώ επιτρέπει στα αυτοκίνητα να μπορούν να εξέλθουν από αυτοκινητοδρόμους, αλλά και να εντοπίσουν καλύτερα άλλα αυτοκίνητα, όταν αυτά θέλουν να αλλάξουν λωρίδα κυκλοφορίας. Όπως είπε ο Elon Musk, αν το Model S του Joshua Brown που έχασε τη ζωή του μέσα στο καλοκαίρι, διέθετε το αναβαθμισμένο Autopilot, κατά πάσα πιθανότητα θα είχε αποφευχθεί το μοιραίο δυστύχημα, μιας και το σύστημα θα καταλάβαινε το φορτηγό.

Μέχρι σήμερα, το Autopilot ειδοποιεί τον οδηγό να ασκήσει πίεση στο τιμόνι, ώστε να διατηρήσει ενεργό το σύστημα, ενώ αν μετά από ένα καθορισμένο χρονικό διάστημα ο οδηγός δεν ανταποκριθεί, το σύστημα αρχίζει μια δεύτερη διαδικασία ματαίωσης του, διάρκειας 15 δευτερολέπτων, επιβραδύνοντας το όχημα, ενημερώνοντας τον οδηγό να τοποθετήσει τα χέρια του στο τιμόνι, προτού τελικά το σύστημα απενεργοποιηθεί.

Στην έκδοση 8.0, το Autopilot θα απεμπλέκεται στο τέλος της παραπάνω διαδικασίας, και δεν θα επιτρέπει στον οδηγό να μπορεί να το ενεργοποιήσει ξανά, αφού προηγουμένως έχει ειδοποιεί τον οδηγό τρεις φορές για να τοποθετήσει τα χέρια του στο τιμόνι. Ο μόνος τρόπος που ο οδηγός θα μπορεί να θέσει ξανά σε λειτουργία το Autopilot, θα είναι να σταματήσει τελείως το αυτοκίνητο, να το σβήσει και να το ξαναξεκινήσει.

H Tesla θεωρεί πως οι βελτιώσεις που έκανε στο Autopilot διασφαλίζουν πως ο αριθμός των ατυχημάτων θα μειωθεί κατά το ήμισυ μέσα σε σύντομο χρονικό διάστημα.

Δελτίο Τύπου

Upgrading Autopilot: Seeing the World in Radar

The Tesla Team September 11, 2016

While there are dozens of small refinements with Version 8 of our software, described in addendum below, the most significant upgrade to Autopilot will be the use of more advanced signal processing to create a picture of the world using the onboard radar. The radar was added to all Tesla vehicles in October 2014 as part of the Autopilot hardware suite, but was only meant to be a supplementary sensor to the primary camera and image processing system.

After careful consideration, we now believe it can be used as a primary control sensor without requiring the camera to confirm visual image recognition. This is a non-trivial and counter-intuitive problem, because of how strange the world looks in radar. Photons of that wavelength travel easily through fog, dust, rain and snow, but anything metallic looks like a mirror. The radar can see people, but they appear partially translucent. Something made of wood or painted plastic, though opaque to a person, is almost as transparent as glass to radar.

On the other hand, any metal surface with a dish shape is not only reflective, but also amplifies the reflected signal to many times its actual size. A discarded soda can on the road, with its concave bottom facing towards you can appear to be a large and dangerous obstacle, but you would definitely not want to slam on the brakes to avoid it.

Therefore, the big problem in using radar to stop the car is avoiding false alarms. Slamming on the brakes is critical if you are about to hit something large and solid, but not if you are merely about to run over a soda can. Having lots of unnecessary braking events would at best be very annoying and at worst cause injury.

The first part of solving that problem is having a more detailed point cloud. Software 8.0 unlocks access to six times as many radar objects with the same hardware with a lot more information per object.

The second part consists of assembling those radar snapshots, which take place every tenth of a second, into a 3D “picture” of the world. It is hard to tell from a single frame whether an object is moving or stationary or to distinguish spurious reflections. By comparing several contiguous frames against vehicle velocity and expected path, the car can tell if something is real and assess the probability of collision.

The third part is a lot more difficult. When the car is approaching an overhead highway road sign positioned on a rise in the road or a bridge where the road dips underneath, this often looks like a collision course. The navigation data and height accuracy of the GPS are not enough to know whether the car will pass under the object or not. By the time the car is close and the road pitch changes, it is too late to brake.

This is where fleet learning comes in handy. Initially, the vehicle fleet will take no action except to note the position of road signs, bridges and other stationary objects, mapping the world according to radar. The car computer will then silently compare when it would have braked to the driver action and upload that to the Tesla database. If several cars drive safely past a given radar object, whether Autopilot is turned on or off, then that object is added to the geocoded whitelist.

When the data shows that false braking events would be rare, the car will begin mild braking using radar, even if the camera doesn’t notice the object ahead. As the system confidence level rises, the braking force will gradually increase to full strength when it is approximately 99.99% certain of a collision. This may not always prevent a collision entirely, but the impact speed will be dramatically reduced to the point where there are unlikely to be serious injuries to the vehicle occupants.

The net effect of this, combined with the fact that radar sees through most visual obscuration, is that the car should almost always hit the brakes correctly even if a UFO were to land on the freeway in zero visibility conditions.

Taking this one step further, a Tesla will also be able to bounce the radar signal under a vehicle in front – using the radar pulse signature and photon time of flight to distinguish the signal – and still brake even when trailing a car that is opaque to both vision and radar. The car in front might hit the UFO in dense fog, but the Tesla will not.

Keywords
Τυχαία Θέματα