ΣΕΒ: Τι φέρνει η τεχνητή νοημοσύνη στις επιχειρήσεις
"Η αξιοποίηση σλυγχρονων εργασλείων ανάλυσης δεδομένων κερδίζει συνεχώς έδαφος στις επιχειρήσεις. Όπως παρόλο που ζούμε στην εποχή της 4ης Βιομηχανικής Επανάστασης η ανθρώπινη «διαίσθηση» και η «εμπειρία» παραμένουν κυρίαρχα κριτήρια των επιχειρηματικών επιλογών στην Ελλάδα, καθώς τα ψηφιακά εργαλεία
Τα παραπάνω, αναφέρει μελέτη του Παρατηρητηρίου Ψηφιακού Μετασχηματισμού του ΣΕΒ με τη συνεργασία της Deloitte.
Βασικά ευρήματαΗ αξιοποίηση δεδομένων ανέκαθεν έδινε ισχυρά πλεονεκτήματα, πλέον όμως τα εργαλεία ανάλυσης δεδομένων της 3ης Βιομηχανικής Επανάστασης που βασίζονταν σε στατιστικά μοτίβα, αντικαθίστανται από εργαλεία τεχνητής νοημοσύνης.Η ανάλυση του τεράστιου όγκου δεδομένων που παράγονται κάθε μέρα, μπορεί να αποτελέσει ανταγωνιστικό πλεονέκτημα, βελτιώνοντας λειτουργίες, τεκμηριώνοντας αποφάσεις και αυξάνοντας την προσαρμοστικότητα.Τα τελευταία 10 χρόνια η εμπορική διαθεσιμότητα εργαλείων τεχνητής νοημοσύνης (όπως η μηχανική μάθηση, σχεσιακά δίκτυα και νευρωνικά δίκτυα, ασαφή σύνολα, ρομποτικό λογισμικό, βαθιά μάθηση, αναπαράσταση γνώσης, κ.λπ.) έχει αυξηθεί κατακόρυφα.Στην Ελλάδα, αν και η αξιοποίηση σύγχρονων ψηφιακών εργαλείων κερδίζει συνεχώς έδαφος στις επιχειρήσεις, συχνά δεν συνοδεύονται από τον ανάλογο διοικητικό και λειτουργικό μηχανισμό.Για παράδειγμα, αν και η Ελλάδα βρίσκεται πάνω από τον ευρωπαϊκό μέσο όρο στην προμήθεια συστημάτων Big Data Analytics, μόνο το 39% των επιχειρήσεων έχει εντάξει την ανάλυση δεδομένων στην κουλτούρα και τις διαδικασίες λήψης αποφάσεων, παρά τα πολύ σημαντικά οφέλη που είναι ήδη ορατά.Το Παρατηρητήριο Ψηφιακού Μετασχηματισμού του ΣΕΒ με τη συνεργασία της Deloitte, προτείνει έναν οδικό χάρτη μέσω 10 καίριων ερωτημάτων, για τον ψηφιακό μετασχηματισμό.Η αξία των δεδομένωνΗ «ευφυής» αξιοποίηση κάθε είδους δεδομένων από ανθρώπους αλλά και επιχειρήσεις ανέκαθεν έδινε ισχυρά πλεονεκτήματα. Στις επιχειρήσεις, ήδη από την 1η Βιομηχανική Επανάσταση, αναλύονται δεδομένα, με διάφορες επιστημονικές μεθόδους, για βελτίωση της παραγωγής, κατανόηση των καταναλωτικών συνηθειών, διαχείριση του οικονομικού κινδύνου, αξιολόγηση των επενδυτικών ευκαιριών, διατήρηση της ανταγωνιστικότητας, κλπ.
Στην περίοδο της 3ης Βιομηχανικής Επανάστασης οι αναλύσεις δεδομένων εστίασαν στην αναγνώριση τάσεων και προοπτικών βασισμένων σε στατιστικά μοτίβα. Αρκετά από αυτά τα συστήματα αξιοποιούνται μέχρι και σήμερα. Αυτό που απουσίαζε ήταν οι προσιτές σε όρους διάδοσης και κόστους τεχνολογίες για ταχεία εκτέλεση σύνθετων υπολογισμών σε πολύ μεγάλο όγκο δεδομένων.
Όμως, τα τελευταία 10 χρόνια η εμπορική διαθεσιμότητα εργαλείων τεχνητής νοημοσύνης (όπως η μηχανική μάθηση, σχεσιακά δίκτυα και νευρωνικά δίκτυα, ασαφή σύνολα, ρομποτικό λογισμικό, βαθιά μάθηση, αναπαράσταση γνώσης, κ.λπ.) έχει αυξηθεί κατακόρυφα.
Η τεχνητή νοημοσύνη έχει διευρύνει τις δυνατότητες «παραδοσιακής» ανάλυση δεδομένων σε τέτοιο βαθμό που πλέον δημιουργούνται συμπεράσματα, γνώσεις και αποφάσεις ευθέως συγκρίσιμες με την εμπειρία της ανώτερης διοίκησης της επιχείρησης. Επιπλέον, η συνεχής «εκπαίδευσή» της με νέα δεδομένα την εξελίσσει περαιτέρω, με αποτέλεσμα να περιορίζεται η ανάγκη ανθρώπινης παρέμβασης στη λήψη αποφάσεων.
Πλέον, η ανάλυση μέρους των 2,5 πεντάκις εκατομμυρίων (quintillion) bytes δεδομένων που παράγονται κάθε ημέρα παγκοσμίως αποτελεί θεμέλιο ανταγωνιστικότητας. Τέτοιες αναλύσεις μπορούν να βελτιώνουν προβληματικές και χρονοβόρες λειτουργίες, να αναγνωρίζουν ευκαιρίες αυτοματοποίησης και τυποποίησης, να τεκμηριώνουν διοικητικές αποφάσεις, να προβλέπουν τις επιπτώσεις εξωτερικών παραγόντων στη επιχείρηση, να προσαρμόζουν την παραγωγή στη ζήτηση, να δημιουργούν προσωποποιημένες υπηρεσίες και προϊόντα σε πραγματικό χρόνο.
Η θέση της ΕλλάδαςΗ αξιοποίηση σύγχρονων εργαλείων ανάλυσης δεδομένων κερδίζει συνεχώς έδαφος στις επιχειρήσεις. Όμως, παρόλο που ζούμε στην εποχή της 4ης Βιομηχανικής Επανάστασης, η ανθρώπινη «διαίσθηση» και η «εμπειρία» παραμένουν κυρίαρχα κριτήρια των επιχειρηματικών επιλογών στην Ελλάδα, καθώς τα ψηφιακά εργαλεία δεν συνοδεύονται από τον ανάλογο διοικητικό και λειτουργικό μετασχηματισμό. Ένα χαρακτηριστικό παράδειγμα είναι το εξής:
Η προμήθεια σύγχρονων εργαλείων ανάλυσης μεγάλου όγκου δεδομένων (Big Data Analytics) είναι ιδιαίτερα διαδεδομένη στον ιδιωτικό τομέα στην Ελλάδα, πάνω από το μέσο όρο της ΕΕ (12η θέση στην ΕΕ-28, στο σχετικό δείκτη DESI2020). Όμως τα εργαλεία αυτά σε μεγάλο βαθμό παραμένουν αναξιοποίητα. Σύμφωνα με πρόσφατη έρευνα της Deloitte, μόνο το 39% των επιχειρήσεων διαθέτει κουλτούρα και διαδικασίες λήψης διοικητικών αποφάσεων που βασίζονται σε ανάλυση δεδομένων.
Η ίδια μελέτη δείχνει ότι τα 2/3 των επιχειρήσεων περιορίζουν τη συλλογή και ανάλυση δεδομένων σε μια πολύ μικρή ομάδα εργαζομένων, ενώ το 67% των ανώτερων διοικήσεων μεγαλύτερων οργανισμών δεν επικροτεί την ροή δεδομένων μεταξύ διαφορετικών μονάδων εντός της επιχείρησης. Το γεγονός ότι τα 2/3 των διοικήσεων σε μεγαλύτερους οργανισμούς δεν αναγνωρίζουν την ροή πληροφοριών εντός της επιχείρησης ως μία ζωτική λειτουργία παραγωγικότητας, είναι σημαντικός διοικητικός αναχρονισμός και ανασταλτικός παράγοντας στον ψηφιακό μετασχηματισμό της οικονομίας.
Τα οφέλη για τις επιχειρήσειςΤα οφέλη είναι ήδη ορατά σε εκείνες τις επιχειρήσεις που επενδύουν σε τεχνολογίες ανάλυσης δεδομένων και ταυτόχρονα μετασχηματίζουν τη διοικητική λειτουργία τους. Η βιομηχανία έχει τη δυνατότητα να προσαρμόσει την ποσότητα παραγωγής βάσει προβλεπόμενης ζήτησης, να διαχειριστεί το ύψος των αποθεμάτων, να διενεργήσει προληπτική συντήρηση, να βελτιστοποιήσει το μίγμα πωλήσεων ανά κανάλι προώθησης, κ.λπ.
Ενδεικτικά, γνωστή ελληνική βιομηχανία συλλέγει και αναλύει δεδομένα προωθητικών ενεργειών σε πραγματικό χρόνο για να εκτιμήσει κρίσιμους δείκτες αποδοτικότητας (πχ ROI, αύξηση πωλήσεων ανά προϊόν και κανάλι). Το εμπόριο, εφαρμόζει λύσεις πρόβλεψης της ζήτησης, διαχείρισης των αποθεμάτων, δυναμικής τιμολόγησης, σύστασης προϊόντων σε πελάτες, κ.λπ. Ενδεικτικά, εταιρεία ηλεκτρονικού εμπορίου αναλύει δεδομένα διαδικτυακών πωλήσεων, με το 35% των εσόδων της να προέρχεται πλέον από τις αναλύσεις αυτές.
Στις χρηματοοικονομικές υπηρεσίες, τα εργαλεία επιτρέπουν την ανάλυση και έλεγχο κινδύνου, την αξιολόγηση της πιστοληπτικής ικανότητας, την ανάλυση cross-selling σε πραγματικό χρόνο. Επιχειρήσεις που αξιοποιούν τέτοια εργαλεία απολαμβάνουν (ενδεικτικά) ως 35% μείωση του χρόνου των εργασιών παραγωγής, ως 25% μείωση αποθεμάτων, ως 3% αύξηση εσόδων, ως 7 μονάδες υψηλότερη απόδοση επένδυσης (ROI), ως 25% μείωση των δαπανών Ε&Α, ως 5% μείωση σε δαπάνες marketing, κ.λπ. Ειδικά οι μεσαίες και μεγάλες επιχειρήσεις που αξιοποιούν συστηματικά αναλύσεις δεδομένων έχουν διπλάσια πιθανότητα να υπερβούν τους στόχους ανάπτυξης και ανταγωνιστικότητας.
Οδικός χάρτης για την αξιοποίηση των δεδομένωνΗ αλλαγή της διοικητικής κουλτούρας είναι το πρώτο βήμα για τη μετάβαση σε ένα επιχειρηματικό μοντέλο βασισμένο σε δεδομένα. Αυτή με τη σειρά της μετασχηματίζει τις διαδικασίες λειτουργίας ώστε να αξιοποιούν σε καθημερινή βάση ψηφιακά εργαλεία συλλογής και ανάλυσης δεδομένων. Το Παρατηρητήριο Ψηφιακού Μετασχηματισμού του ΣΕΒ, με τη συνεργασία της Deloitte, προτείνει έναν οδικό χάρτη για την επιτάχυνση της ψηφιακής μετάβασης και την επιτυχημένη αξιοποίηση των εργαλείων αυτών από κάθε επιχείρηση.
Στόχευση: Ποιο είναι το συγκεκριμένο πρόβλημα που επιθυμεί να ανατρέψει η διοίκηση, ποιες είναι οι διαδικασίες που επιθυμεί να βελτιώσει, ποιος είναι ο συγκεκριμένος στόχος που επιθυμεί να πετύχει;Σύνδεση με τη στρατηγική: Με ποιο τρόπο θα συνδέσει η επιχείρηση τον ψηφιακό μετασχηματισμό με τη συνολική στρατηγική της;Πηγές δεδομένων: Πού βρίσκονται τα απαραίτητα δεδομένα προς συλλογή και ανάλυση (εντός / εκτός επιχείρησης); Ποιες είναι οι πηγές προέλευσης και ποια η σημερινή μορφή τους; Ποιο το κόστος και ποια η δυνατότητα συλλογής των δεδομένων; Πώς μπορεί να διασφαλιστεί η ποιότητα και αξιοπιστία τους;Ευθύνη: Ποια οργανωτική δομή, με ποιες αρμοδιότητες και με ποια στελέχωση, θα υποστηρίξει τις νέες διαδικασίες συλλογής και ανάλυσης δεδομένων; Ποιοι εργαζόμενοι από ποια τμήματα θα εμπλακούν και πώς θα κατανεμηθούν ρόλοι και αρμοδιότητες;Δεξιότητες: Υπάρχουν οι κατάλληλες δεξιότητες στην επιχείρηση (πχ ανάλυσης δεδομένων, αξιοποίησης εργαλείων τεχνητής νοημοσύνης, κ.λπ.) και αν όχι πώς θα αποκτηθούν;Αναδιοργάνωση: Πώς πρέπει να μετασχηματιστούν οι οργανωτικές δομές (συμπεριλαμβανομένης και της ανώτερης διοίκησης) και οι διαδικασίες λήψης αποφάσεων για να αξιοποιούν σε καθημερινή βάση τις αναλύσεις δεδομένων; Πώς θα παρακολουθείται η απόδοση;Τεχνολογίες: Ποια συστήματα ανάλυσης δεδομένων καλύπτουν τις ανάγκες της επιχείρησης σήμερα αλλά και σε μεσοπρόθεσμο ορίζοντα; Πώς προστατεύονται τα δεδομένα από κυβερνο-επιθέσεις;Κίνδυνοι. Ποιοι είναι οι πιθανοί παράγοντες αποτυχίας του μετασχηματισμού, ποιες δομές ενδέχεται να αλλάξουν ριζικά τρόπο λειτουργίας; Πώς θα ενημερωθεί έγκαιρα το προσωπικό για τις αλλαγές;Αξιοπιστία: Πώς διασφαλίζεται η ποιότητα, η αξιοπιστία και η εμπιστευτικότητα των δεδομένων χωρίς να περιορίζεται η ροή εντός της επιχείρησης; Ποιοι οι κανόνες δεοντολογίας αλλά και προστασίας της πνευματικής ιδιοκτησίας;Προμήθεια: Ποια στρατηγική προμηθειών είναι κατάλληλη για το μέγεθος και τον κλάδο της επιχείρησης (πχ προμήθεια ως υπηρεσία, έτοιμο λογισμικό, πιλοτική εφαρμογή, κ.λπ.);
- Δημοφιλέστερες Ειδήσεις Κατηγορίας Οικονομία
- ΗΠΑ: Εκτελέστηκε η Λάιζα Μοντγκόμερι
- Θλίψη: Πέθανε ο ηθοποιός Στέλιος Τσολακάκης
- Όταν η Λαχαναγορά απέκτησε τα δικά της «Μεζεκλίκια»
- Ο πλήρης οδηγός για το «click in shop»: Όλα όσα πρέπει να γνωρίζετε
- Αlpha Bank:Γιατί αυξήθηκαν οι καταθέσεις των νοικοκυριών στην πανδημία – Τα μηνύματα από την κατανάλωση
- ΣΕΒ: Τι φέρνει η τεχνητή νοημοσύνη στις επιχειρήσεις
- Ρωσία: 22.850 νέα κρούσματα κορονοϊού και 566 θάνατοι
- Εκπτώσεις έως και 50% από τη Wind
- Έρευνα ΙΟΒΕ για τη ναυτιλία: Οι επιπτώσεις της πανδημίας, οι προοπτικές ανάκαμψης
- Δημοφιλέστερες Ειδήσεις Businessnews
- ΣΕΒ: Τι φέρνει η τεχνητή νοημοσύνη στις επιχειρήσεις
- Ιερέας στο Αγρίνιο: Κοινώνησα 700 πιστούς τα Χριστούγεννα, δεν μεταδίδεται ο κορονοϊός
- Κορονοϊός: Σε μερικά χρόνια θα είναι μια παιδική λοίμωξη σαν κρυολόγημα
- Β. Κικίλιας: Συγκινήθηκε μιλώντας για τους υγειονομικούς
- Alpha Bank: Γιατί αυξήθηκαν 7,1 δισ. οι καταθέσεις των νοικοκυριών στην πανδημία;
- Δερμιτζάκης: Πρέπει να αρχίσει να «ανοίγει» η Ελλάδα
- Σήμα κινδύνου από χιλιάδες επιχειρήσεις σε Βρετανία και Ελβετία
- Κατασκευή e-shop από το κράτος: Πότε ανοίγει η πλατφόρμα για τις αιτήσεις
- Τσιάρας: Παράταση 15 ημερών για τις αιτήσεις ένταξης στο νόμο Κατσέλη
- Κακοκαιρία «Λέανδρος»: Ισχυρό ψύχος και χιονοπτώσεις από την Πέμπτη-Χιόνια και στην Αττική
- Τελευταία Νέα Businessnews
- ΣΕΒ: Τι φέρνει η τεχνητή νοημοσύνη στις επιχειρήσεις
- Έγκριση του σχεδίου "Κατασκευή και λειτουργία πολυτελούς τουριστικής μονάδας" στο Σκορπιό
- Αναδρομικά και αυξήσεις στις συντάξεις: Ποιοι είναι οι δικαιούχοι και πότε πληρώνονται
- Αρναούτογλου: Ψυχρές αέριες μάζες φθάνουν στην Ελλάδα-Πού θα χιονίσει
- Σήμα κινδύνου από χιλιάδες επιχειρήσεις σε Βρετανία και Ελβετία
- Υπ. Παιδείας: Παρουσιάζεται το νέο νομοσχέδιο για Πανελλαδικές και πανεπιστήμια
- Β. Κικίλιας: Συγκινήθηκε μιλώντας για τους υγειονομικούς
- Ιερέας στο Αγρίνιο: Κοινώνησα 700 πιστούς τα Χριστούγεννα, δεν μεταδίδεται ο κορονοϊός
- Κατασκευή e-shop από το κράτος: Πότε ανοίγει η πλατφόρμα για τις αιτήσεις
- ΣΥΡΙΖΑ: Παράταση-κοροϊδία για τον επαναπροσδιορισμό υποθέσεων του Ν. Κατσέλη
- Τελευταία Νέα Κατηγορίας Οικονομία
- ΣΕΒ: τα οφέλη της ευφυούς αξιοποίησης δεδομένων για τις επιχειρήσεις
- ΣΕΒ: Τα οφέλη της ευφυούς αξιοποίησης δεδομένων για τις επιχειρήσεις
- Alpha Bank: Φωνητική καθοδήγηση σε 102 ΑΤΜ για άτομα με περιορισμένη όραση
- Ρωσία: 22.850 νέα κρούσματα κορονοϊού και 566 θάνατοι
- Εξαδάκτυλος: Στο δίλημμα λιανεμπόριο ή Γ’ Λυκείου θα προτείνουμε άνοιγμα της αγοράς
- Δείτε ποια εταιρεία σημείωσε ανάκαμψη από την πανδημία με ρεκόρ όλων των εποχών στις πωλήσεις
- Δείτε το Πάρκο Ειρήνης στη Χιροσίμα
- Πάμε ένα virtual ταξίδι στη Νέα Υόρκη;
- Σέρρες: Υποχωρούν τα πλημμυρικά φαινόμενα στον Στρυμόνα
- Ο Αλεξέι Ναβάλνι θα επιστρέψει στις 17 Ιανουαρίου στην Ρωσία